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Slow relaxation in the large-N model for phase ordering
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The basic features of the slow relaxation phenomenology arising in phase ordering processes are obtained
analytically in the large-N model through the exact separation of the order parameter into the sum of thermal
and condensation components. The aging contribution in the response functionxag(t,tw) is found to obey a
pattern of behavior, under variation of dimensionality, qualitatively similar to the one observed in Ising
systems. There exists a critical dimensionality (d54) above whichxag(t,tw) is proportional to the defect
densityrD(t), while for d,4 it vanishes more slowly thanrD(t) and atd52 does not vanish. As in the Ising
case, this behavior can be understood in terms of the dependence on dimensionality of the interplay between
the defect density and the effective response associated to a single defect.
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I. INTRODUCTION

The phase-ordering processes@1# following the quench of
nondisorder systems~e.g., ferromagnets! below the critical
point provide a simplified framework for the study of slo
relaxation phenomena. In particular, aging and the o
equilibrium deviation from the fluctuation dissipation the
rem ~FDT! have been studied numerically@2–4# and through
analytical treatment of solvable models@5–7#. The basic
structure of the complex phenomenology arising in th
processes originates from the wide separation in the t
scales of fast and slow variables. Referring to the more
tuitive case of a domain forming system, in the late stage
phase ordering the order parameter can be assumed to b
sum of two statistically independent components@8#

f~xW ,t !5c~xW ,t !1s~xW ,t !, ~1!

the first describing equilibrium thermal fluctuations with
domains and the second off-equilibrium fluctuations due
interface motion. From Eq.~1! follows rather straightfor-
wardly the split of the autocorrelation function

G~ t,tw!5Gst~ t2tw!1GagS t

tw
D , ~2!

whereGst(t2tw) is the stationary time translation invaria
~TTI! contribution due toc andGag(t/tw) is the aging con-
tribution due to the off-equilibriums degrees of freedom. A
similar structure shows up in the linear response at the t
t to an external random field switched on at the earlier ti
tw

x~ t,tw!5xst~ t2tw!1xag~ t,tw!. ~3!
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Here, the stationary contributionxst(t2tw) satisfies the
equilibrium FDT with respect toGst(t2tw), while xag(t,tw)
is the off-equilibrium extra response due to the presence
the interfaces. This is considered@2,3,6# to be proportional to
the interface density

xag~ t,tw!;r I~ t !, ~4!

where r I(t);L21(t) and L(t);t1/z is the typical domain
size withz52 for nonconserved order parameter@1#, as we
shall assume in the following. A more precise formulation
this behavior is through the scaling relation

xag~ t,tw!5tw
2ax̂S t

tw
D ~5!

with the exponenta51/2. The implication is thatxag(t,tw)
is negligible in the asymptotic regimetw→`.

Motivated by analytical results@7,9# for the one-
dimensional Ising model, which do not fit in the abov
scheme, recently we have undertaken a detailed study o
behavior of the response function under variation of sp
dimensionality for a system with a scalar order parame
@4#. On the basis of numerical simulations for discrete Isi
spins and approximated analytical results for continuo
spins, we have arrived to a picture for the behavior
xag(t,tw), which modifies considerably the one present
above. This is best understood by introducing the notion
the effective response due to a single interface and is defi
by

xag~ t,tw!5r I~ t !xe f f~ t,tw!. ~6!

Then, if Eq.~4! were to hold,xe f f(t,tw) ought to be a con-
stant. Instead, we have found that for an Ising system thi
the case only ford.3, while ford,3 there is the power law
growth

xe f f~ t,tw!;~ t2tw!a ~7!

with numerical values for the exponent compatible witha
5(32d)/4. At d53 the power law is replaced by logarith
mic growth, promotingd53 to the role of a critical dimen-
sionality. This result is interesting for two reasons. The fi
©2002 The American Physical Society36-1
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concerns the mechanism of the response and the role o
off-equilibrium degrees of freedom. The power law~7! re-
veals that ford,3 the aging component of the response do
not originate trivially just from the polarization of interfacia
spins, but a more complex phenomenon producing la
scale optimization of the position of domains with respect
the external field is at work. The second regards the ove
behavior ofxag(t,tw). Putting together Eqs.~6! and ~7!, the
exponenta in Eq. ~5! acquires a dependence on dimensio
ality

a5H 1

2
, d.3

d21

4
, d,3

~8!

showing that limtw→`xag(t,tw) does not vanish asd→1.

This indicates thatd51 plays the role of a lower critica
dimensionality, where the off-equilibrium response becom
persistent. An interesting consequence of this phenomeno
that the connection between static and dynamic prope
@10#, which holds ford.1, is invalidated atd51. It should
be added that in order to have a phase-ordering proces
d51 thermal fluctuations within domains must be su
pressed@4#.

As stated previously, the picture summarized above
been established on the basis of a combination of exac
sults for thed51 Ising model, numerical results for Isin
systems withd.1, and approximate analytical results f
continuous spin systems. It is, then, interesting to test h
general is the picture. As a step in this direction, we ha
considered the large-N model where exact analytical calcu
lations can be carried out@11#. The slow relaxation proper
ties of the large-N or equivalent mean field models, arising
the quench at or belowTC have been analyzed before@5,12#.
What we do here, however, goes beyond previous res
since we manage to reproduce exactly and analytically
scenario outlined for Ising systems. We show that in
large-N model one can make explicitly the separation~1! of
the order parameter into the sum of two independent com
nents, which are responsible for the stationary and ag
contributions in Eq.~2!. Then, we carry out analytically th
corresponding separation~3! of the response function. Afte
introducing the notion of defect density for the large-N
model, we derive by analogy with Eq.~6! the effective re-
sponse per defect and we find a behavior, as dimension
is varied, qualitatively similar to the one established for s
lar systems.

The paper is organized as follows. In Sec. II the largeN
model is defined and the main static properties are review
In Sec. III the solution of the equation of motion is presen
and the analytical form of the autocorrelation function
obtained in quenches at and below the critical point. In S
IV the splitting of the order parameter into independent co
ponents satisfying the requirements described above is
ried out. In Sec. V the behavior of the integrated respo
04613
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function is considered in relation to the off-equilibrium d
viation from the FDT. Finally, concluding remarks are ma
in Sec. VI.

II. MODEL AND STATIC PROPERTIES

We consider the purely relaxational dynamics of a syst
with a nonconserved order parameter governed by
Langevin equation

]fW ~xW ,t !

]t
52

dH@fW #

dfW ~xW ,t !
1hW ~xW ,t !, ~9!

wherefW 5(f1 , . . . ,fN) is an N-component vector,hW (xW ,t)
is a Gaussian white noise with expectations

^hW ~xW ,t !&50,

^ha~xW ,t !hb~xW8,t8!&52Tda,bd~xW2xW8!d~ t2t8! ~10!

andT is the temperature of the thermal bath. In the dynam
cal process of interest, the system is initially prepared in
infinite temperature equilibrium state with expectations

^fW ~xW !&50,

^fa~xW !fb~xW8!&5Dda,bd~xW2xW8!, ~11!

and at the timet50 is quenched to a lower final temperatu
TF . The Hamiltonian is of the Ginzburg-Landau form

H@fW #5E
V
ddxF1

2
~“fW !21

r

2
fW 21

g

4N
~fW 2!2G , ~12!

wherer ,0, g.0, andV is the volume of the system. In th
large-N limit the equation of motion for the Fourier trans
form of the order parameterfW (kW )5*VddxfW (xW )exp(ikW•xW)
takes the linear form

]fW ~kW ,t !

]t
52@k21I ~ t !#fW ~kW ,t !1hW ~kW ,t !, ~13!

where

^hW ~kW ,t !&50,

^ha~kW ,t !hb~kW8,t8!&52TFda,bVdkW1kW8,0d~ t2t8!, ~14!

and the function of time

I ~ t !5r 1
g

N
^fW 2~xW ,t !& ~15!

must be determined self-consistently, with the average on
right hand side taken both over thermal noise and ini
condition. If the volumeV is kept finite the system equili
brates in a finite timeteq and the order parameter probabili
distribution reaches the Gibbs state
6-2
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SLOW RELAXATION IN THE LARGE-N MODEL FOR . . . PHYSICAL REVIEW E 65 046136
Peq@fW ~kW !#5
1

Z
expF2

1

2TFV (
kW

~k21j22!fW ~kW !•fW ~2kW !G ,

~16!

wherej is the correlation length defined by the equilibriu
value of I (t) through

j225r 1
g

N
^fW 2~xW !&eq ~17!

with ^•&eq standing for the average taken with Eq.~16!.
In order to analyze the properties ofPeq@fW (kW )# it is nec-

essary to extract from Eq.~17! the dependence ofj22 on T
andV. Evaluating the average, the above equation yields

j225r 1
g

V (
kW

TF

k21j22
. ~18!

The solution of this equation is well known@13# and here we
summarize the main features. Separating thekW50 term un-
der the sum, for very large volume we may rewrite

j225r 1gTFB~j22!1g
TF

Vj22
, ~19!

where

B~j22!5 lim
V→`

1

V (
kW

1

k21j22
5E ddk

~2p!d

e2k2/L2

k21j22

~20!

regularizing the integral by introducing the high momentu
cutoff L. The functionB(x) is a non-negative monotonicall
decreasing function with the maximum value atx50,

B~0!5E ddk

~2p!d

e2k2/L2

k2
5~4p!2d/2

2

d22
Ld22. ~21!

By graphical analysis one can easily show that Eq.~19! ad-
mits a finite solution for allTF . However, there exists th
critical value of the temperatureTC defined by

r 1gTCB~0!50 ~22!

such that forTF.TC the solution is independent of the vo
ume, while forTF<TC it depends on the volume. Using

B~x!5~4p!2d/2xd/221ex/L2
GS 12

d

2
,

x

L2D , ~23!

where G(12d/2,x/L2) is the incomplete gamma function
for 0,(TF2TC)/TC!1 one finds~Appendix A! j;„(TF
2TC)/TC…

2n, wheren51/2 for d.4 andn51/(d22) for
d,4, with logarithmic corrections ford54. At TC one has
j;Vl with l51/4 for d.4 and l51/d for d,4, again
04613
with logarithmic corrections ford54. Finally, belowTC one
finds j25M2V/TF where M25M0

2
„(TC2TF)/TC… and M0

2

52r /g.
Let us now see what are the implications for the equil

rium state. As Eq.~16! shows the individual Fourier compo
nents are independent random variables, gaussianly dis
uted with zero average. The variance is given by

1

N
^fW ~kW !•fW ~2kW !&eq5VCeq~kW !, ~24!

where

Ceq~kW !5
TF

k21j22
~25!

is the equilibrium structure factor. ForTF.TC , all kW modes
behave in the same way, with the variance growing linea
with the volume. ForTF<TC , instead,j22 is negligible
with respect tok2 except atkW50, yielding

Ceq~kW !55
TC

k2
~12dkW ,0!1aV2ldkW ,0 for TF5Tc

TF

k2
~12dkW ,0!1M2VdkW ,0 for TF,Tc ,

~26!

wherea is a constant~Appendix A!. This produces a volume
dependence in the variance of thekW50 mode growing faster
than linear. Therefore, forTF<TC the kW50 mode behaves
differently from all the other modes withkWÞ0. For TF
,TC the probability distribution~16! takes the form

Peq@fW ~kW !#5
1

Z
e2fW 2(0)/2M2V2

3expF2
1

2TFV (
kW

k2fW ~kW !•fW ~2kW !G .

~27!

Therefore, crossingTC there is a transition from the usua
disordered high temperature phase to a low tempera
phase characterized by a macroscopic variance in the d
bution of thekW50 mode. The distinction between this pha
and the mixture of pure states, obtained belowTC whenN is
kept finite, has been discussed elsewhere@14#.

We shall refer to this transition as condensation of flu
tuations in thekW50 mode. In order to gain a better insight
is convenient to go back to real space, splitting the or
parameter into the sum of the two independent compone

fW ~xW !5sW 1cW ~xW ! ~28!

with
6-3
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sW 5
1

V
fW ~kW50! ~29!

and

cW ~xW !5
1

V (
kWÞ0

fW ~kW !eikW•xW. ~30!

Then Eq.~27! takes the form

Peq@fW ~xW !#5P~sW !P@cW ~xW !# ~31!

where

P~sW !5
1

~2pM2!N/2
e2sW 2/2M2

~32!

shows the formation of the condensate belowTC with the
macroscopic variance 1/N^sW 2&eq5M2 while

P@cW ~xW !#5
1

Z
expF2

1

2TF
E

V
ddx~“cW !2G ~33!

describes thermal fluctuations about the condensate. C
spondingly, the correlation function Geq(xW2xW8)
5(1/N)^fW (xW )•fW (xW8)&eq splits into the sum of two pieces

Geq~xW2xW8!5GT~xW2xW8!1M2, ~34!

where

GT~xW2xW8!5
1

N
^cW ~xW !•cW ~xW8!&eq ~35!

is the correlation of thermal fluctuations andM2 comes from
fluctuations of the condensate. SinceGT(xW2xW8) at large dis-
tances decays likeuxW2xW8u22d, from Eq. ~34! follows
limuxW2xW8u→`Geq(xW2xW8)5M2 showing the violation of the
clustering property of the correlation function due to t
breaking of ergodicity in the low temperature phase. For
ture reference, notice that from Eq.~17! follows that for xW

5xW8 andTF<TC

Geq~0!5M0
2 , ~36!

which in turn implies

GT~0!5M0
22M2. ~37!

As stated above, with a finiteV equilibrium is reached fort
;teq and teq;j2. Hence, in a quench toTF,TC one has
teq;V implying that if theV→` limit is taken at the begin-
ning of the quench, equilibrium is not reached for any fin
time. Since in the following we are interested in the rela
ation regime before equilibrium is reached, we shall take
thermodynamic limit from the outset. We are interested
see whether it is possible to carry out the decomposition~1!

of the order parameter in such a way thatsW (xW ,t) eventually
04613
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evolves into the equilibrium condensatesW and cW (xW ,t) into
the equilibrium thermal fluctuations.

III. DYNAMICS

Due to rotational symmetry, from now on we shall dro
vectors and refer to the generic component of the order
rameter. The formal solution of Eq.~13! is given by

f~kW ,t !5R~kW ,t,0!f0~kW !1E
0

t

dt8R~kW ,t,t8!h~kW ,t8!,

~38!

wheref0(kW )5f(kW ,t50) and according to Eq.~11! in the
V→` limit

^f0~kW !&50

^f0~kW !f0~kW8!&5D~2p!dd~kW1kW8!. ~39!

The response function is given by

R~kW ,t,t8!5
Y~ t8!

Y~ t !
e2k2(t2t8) ~40!

with Y(t)5exp@Q(t)#, Q(t)5*0
t dsI(s), andY(0)51. The ac-

tual solution is obtained once the functionY(t) is deter-
mined. In order to do this, notice that from the definition
Y(t) follows

dY2~ t !

dt
52@r 1g^f2~xW ,t !&#Y2~ t !. ~41!

Writing ^f2(xW ,t)& in terms of the structure factor

^f2~xW ,t !&5E ddk

~2p!d
C~kW ,t !e2k2/L2

~42!

and using Eq.~38! to evaluateC(kW ,t)

C~kW ,t !5R2~k,t,0!D12TFE
0

t

dt8R2~kW ,t,t8!, ~43!

from Eq. ~41! we obtain the integro-differential equation

dY2~ t !

dt
52rY2~ t !12gD f S t1

1

2L2D
14gTFE

0

t

dt8 f S t2t81
1

2L2D Y2~ t8!, ~44!

where

f ~x![E ddk

~2p!d
e22k2x5~8px!2d/2. ~45!

Solving Eq.~44! by Laplace transform@12,15#, the leading
behavior ofY(t) for large time is given by
6-4
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Y2~ t !5H Aae2j22t for TF.TC

Act
v for TF5TC

Abt2d/2 for TF,TC ,

~46!

wherev50 for d.4 andv5(d24)/2 for d,4. The values
of the constantsAa , Ab , andAc are listed in Appendix B.

This completes the solution of the model. Once the
sponse function is known, we may go back to Eq.~38! and
take various averages. Using Eqs.~14! and ~39! we have

^f~kW ,t !&50 ~47!

and for the two time structure factor̂f(kW ,t)f(kW8,t8)&
5C(kW ,t,t8)(2p)dd(kW1kW8) with t>t8

C~kW ,t,t8!5R~kW ,t,0!R~kW ,t8,0!D

12TFE
0

t8
dt9R~kW ,t,t9!R~kW ,t8,t9!. ~48!

The corresponding real space correlation functionG(xW

2xW8,t,t8)5^f(xW ,t)f(xW8,t8)& is given by

G~xW2xW8,t,t8!5E dxW9R~xW2xW9,t,0!R~xW82xW9,t8,0!D

12TFE
0

t8
dt9E dxW9R~xW2xW9,t,t9!

3R~xW82xW9,t8,t9!, ~49!

where R(xW ,t,t8) is the inverse Fourier transform o
R(kW ,t,t8). In the following we will be primarily concerned
04613
-

with the autocorrelation function G(t,t8)5G(xW2xW8
50,t,t8). Using the definitions~40! and~45!, this is given by

G~ t,t8!5
1

Y~ t !Y~ t8!
F f S t1t8

2
1

1

2L2D D

12TFE
0

t8
dt9 f S t1t8

2
2t91

1

2L2D Y2~ t9!G .

~50!

The behavior of this quantity for different final temperatur
and for different time regimes has been studied in the lite
ture @12,15#. Here we summarize the results.

For TF.TC , from Eq. ~46! follows that for t8.teq
52j22 the autocorrelation function is TTI

G~t!5Geq~0!e2t/teq, ~51!

whereGeq(0) is the equilibrium fluctuation aboveTC given
by Eq. ~17!, i.e., Geq(0)5M0

21(1/g)j22 andt5t2t8.
For TF<Tc the equilibration time diverges and there a

two time regimes of interest:~i! short time separationt8
→` and t/t8→0; ~ii ! large time separationt8→` and
t/t8→`.

Taking t8 large and using Eqs.~46!, for TF5TC in these
limits we find

G~ t,t8!55
M0

2~L2t11!12d/2 for
t

t8
→0

At812d/2FS t

t8
D for

t

t8
→`

~52!

with
F~x!55
4

~4p!d/2~d22!
~x21!12d/2

x12d/4

x11
for 2,d,4

4

~8p!d/2~d22!
F S x21

2 D 12d/2

2S x11

2 D 12d/2G for d.4,

~53!
and forTF,Tc ,

G~ t,t8!55
M21~M0

22M2!~L2t11!12d/2 for
t

t8
→0

M2F 4tt8

~ t1t8!2G d/4

for
t

t8
→`.

~54!

In the latter case we may also write
G~ t,t8!5Gst~t!1GagS t8

t D , ~55!

where

Gst~t!5~M0
22M2!~L2t11!12d/2 ~56!

and

Gag~x!5M2F 4x

~11x!2G d/4

. ~57!
6-5
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This is illustrated in Fig. 1 that shows the convergence
ward the form ~55! of the exact autocorrelation functio
G(t,t8) obtained by solving numerically the coupled set
Eqs.~44! and ~50!.

As explained in the Introduction, this behavior is sugg
tive of the existence of two variables responsible, resp
tively, for the stationary and of the aging behaviors. Now
want to show that in the large-N limit these two variables can
be explicitly constructed.

IV. SPLITTING OF THE FIELD

The task stated at the end of the preceding section
quires the splitting of the order parameter field into the s
of two independent contributions

f~xW ,t !5c~xW ,t !1s~xW ,t ! ~58!

with zero averageŝc(xW ,t)&5s(xW ,t)50 and autocorrelation
functions such that

^c~xW ,t !c~xW ,t8!&5Gst~t! ~59!

s~xW ,t !s~xW ,t8!5Gag~ t8/t !. ~60!

In order to stress the statistical independence of the two c
ponent fields, we have used the angular brackets for aver
over c and the overbar for averages overs.

For the construction of fields with these properties, let
go back to Fourier space. Using the multiplicative prope
of the response function

R~kW ,t,t8!R~kW ,t8,t0!5R~kW ,t,t0! ~61!

with t.t8.t0 it is easy to show that the formal solution~38!
of the equation of motion can be rewritten as the sum of t
statistically independent componentsf(kW ,t)5c(kW ,t)
1s(kW ,t) with

s~kW ,t !5R~kW ,t,t0!f~kW ,t0! ~62!

FIG. 1. Comparison of the exact autocorrelation functi
G(t,tw) ~broken line! with the sumGst(t2tw)1Gag(t/tw) ~con-
tinuous line! for tw51,10,102,103 increasing from left to right. For
tw5103 the two curves are indistinguishable. Parameters of
quench ared53, TF5TC/2, andD51.
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c~kW ,t !5E
t0

t

dt8R~kW ,t,t8!h~kW ,t8! ~63!

since, for 0<t0,t, f(kW ,t0) andh(kW ,t) are independent by
causality. In other words, the order parameter at the timet is
split into the sum of a components(kW ,t) driven by the fluc-
tuations of the order parameter at the earlier timet0 and a
componentc(kW ,t) driven by the thermal history betweent0
andt. Let us remark thatt0 can be chosen arbitrarily betwee
the initial time of the quench (t50) and the observation time
t. With the particular choicet050, the components(kW ,t) is
driven by the fluctuations in the initial condition~39!. Thec
component describes fluctuations of thermal origin while
s component, as it will be clear below, ift0 is chosen suffi-
ciently large, describes the local condensation of the or
parameter.

According to definitions~62! and~63!, from Eqs.~14! and

~39! follows s(kW ,t)5^c(kW ,t)&50. The two time structure
factor splits into the sum

C~kW ,t,t8!5Cs~kW ,t,t8!1Cc~kW ,t,t8! ~64!

with s(kW ,t)s(kW8,t8)5Cs(kW ,t,t8)(2p)dd(kW1kW8) and

Cs~kW ,t,t8!5R~kW ,t,t0!R~kW ,t8,t0!C~kW ,t0!, ~65!

whereC(kW ,t0) is the equal time structure factor at the tim
t0. Similarly ^c(kW ,t)c(kW8,t8)&5Cc(kW ,t,t8)(2p)dd(kW1kW8)
with

Cc~kW ,t,t8!52TFE
t0

t8
dt9R~kW ,t,t9!R~kW ,t8,t9!. ~66!

Going to real space and settingxW5xW8, we have

G~ t,t8!5Gs~ t,t8!1Gc~ t,t8! ~67!

with

Gs~ t,t8!5
Y2~ t0!

Y~ t !Y~ t8!
E ddk

~2p!d

3expF2k2S t1t822t01
1

L2D GC~kW ,t0! ~68!

and

Gc~ t,t8!52TFE
t0

t8
dt9

Y2~ t9!

Y~ t !Y~ t8!
E ddk

~2p!d

3expF2k2S t1t822t91
1

L2D G . ~69!

e

6-6



im
a

u
h

-

-

s
ts

lues

l
ize
n

eter

e
i-
ait

ve

licit
om-

nts

-
hed,

c-

SLOW RELAXATION IN THE LARGE-N MODEL FOR . . . PHYSICAL REVIEW E 65 046136
Assuming thatt and t8 are sufficiently larger thant0 so that
C(kW ,t0) under the integral in Eq.~68! can be replaced by its
value atkW50 and using Eq.~45! we may write

Gs~ t,t8!5
Y2~ t0!

Y~ t !Y~ t8!
f S t1t8

2
2t01

1

2L2D C0 , ~70!

Gc~ t,t8!5
2TF

Y~ t !Y~ t8!
E

t0

t8
dt9 f S t1t8

2
2t91

1

2L2D Y2~ t9!,

~71!

whereC05C(kW50,t0).
Let us now evaluate these results for short and large t

separations. In the first case the dominant contributions
given by

Gs~ t,t8!5M22~M0
22M2!~2L2t0!12d/2 ~72!

and

Gc~ t,t8!5~M0
22M2!@~2L2t0!12d/21~L2t11!12d/2#,

~73!

where the unknown constantC0 entering Eq.~70! has been
eliminated imposing that the equilibrium sum ruleGs(0)
1Gc(0)5M0

2 be satisfied. The sum of the above contrib
tions is independent oft0, as it should, and coincides wit
Eq. ~54!. Similarly, in the large time regime we find thet0
dependent results

Gs~ t,t8!5@M22~M0
22M2!~2L2t0!12d/2#F 4tt8

~ t1t8!2G d/4

~74!

and

Gc~ t,t8!5~M0
22M2!~2L2t0!12d/2F 4tt8

~ t1t8!2G d/4

~75!

again with the sum independent oft0 and giving back Eq.
~54!. Defining the microscopic timet* 5L22, we see that
taking t0@t* from Eqs.~72! and ~73! we get the short time
behavior

Gs~ t,t8!5M2,

Gc~ t,t8!5~M0
22M2!~L2t11!12d/2, ~76!

while from Eqs.~74! and~75! follows the large time behav
ior

Gs~ t,t8!5M2F 4tt8

~ t1t8!2G d/4

,

Gc~ t,t8!50. ~77!

Comparing with Eqs.~56! and ~57! we can make the identi
fications
04613
e
re

-

Gc~ t,t8!5Gst~t! ~78!

and

Gs~ t,t8!5GagS t8

t D . ~79!

Therefore, the fieldss(xW ,t) andc(xW ,t) defined by Eqs.~62!
and~63!, with the choice oft0@t* , provide an explicit real-
ization of the decomposition~58! satisfying the requirement
~59! and~60!. The physical meaning of the two componen
can be readily understood comparing the equal time va
of Eq. ~76!, which yield, respectively,Gs(t5t8)5M2 and
Gc(t5t8)5M0

22M2, with the equilibrium results~36! and

~37!. It is then clear that the fields(xW ,t) is associated to loca
condensation of the order parameter with fluctuations of s
M2, while the fieldc(xW ,t) describes thermal fluctuations. I
the case of a system with a scalar order parameter,s would
be associated to the average value of the order param
characteristic of a domain andc to thermal fluctuations
within domains@4#. This also makes clear the origin of th
requirementt0@t* . In order to make a separation of var
ables with the above physical meaning, it is necessary to w
a time t0 large enough for all microscopic transients to ha
occurred leaving well formed local equilibrium.

V. RESPONSE FUNCTION

In the preceding section we have produced the exp
separation of the order parameter into the condensation c
ponent and thermal fluctuations in the quench atTF,TC . It
is now interesting to see in what relation these compone
are with the linear response function.

If an external field is switched on at the timetw.t0, the
splitting ~58! modifies intofW h(xW ,t)5cW (xW ,t)1sW h(xW ,t) where
to the linear order

sW h~xW ,t !5sW ~xW ,t !1E
tw

t

dt8E
V
dxW8R~xW2xW8,t,t8!hW ~xW8!

~80!

with s(xW ,t), c(xW ,t), andR(xW ,t,t8) being unperturbed quan
tities. Here, we are interested in the response to a quenc
gaussianly distributed random field with expectations

Eh@hW ~xW !#50,

Eh@ha~xW !hb~xW8!#5h0
2dabd~xW2xW8!. ~81!

Computing the staggered magnetization from Eq.~80! and
averaging over the field, we obtain

1

Nh0
2V
E

V
dxWEh@sW h~xW ,t !•hW ~xW !#5x~ t,tw!, ~82!

wherex(t,tw)5* tw
t R(t,t8) is the integrated response fun

tion and R(t,t8)5R(xW2xW850,t,t8). From Eqs. ~40! and
~46!, for TF,Tc ,
6-7
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R~ t,t8!5E ddk

~2p!d
R~kW ,t,t8!e2k2/L2

5~4p!2d/2S t8

t D 2d/4S t2t81
1

L2D 2d/2

. ~83!

Let us then write the integrated response function as the

x~ t,tw!5xst~ t2tw!1xag~ t,tw!, ~84!

where the stationary componentxst(t2tw) is defined by re-
quiring that the equilibrium FDT be satisfied with respect
the stationary component~78! of the autocorrelation func
tion, namely,

TFxst~ t2tw!5Gc~0!2Gc~ t2tw!. ~85!

It is straightforward to check that this is verified by

xst~ t2tw!5~4p!2d/2E
tw

t

dt8S t2t81
1

L2D 2d/2

5
1

TF
~M0

22M2!$12@L2~ t2tw!11#12d/2%.

~86!

The aging component then remains defined by the differe

xag~ t,tw!5x~ t,tw!2xst~ t2tw!

5~4p!2d/2tw
12d/2xd/221E

x

1

dy

3S 12y1
x

L2tw
D 2d/2

~y2d/421!, ~87!

wherex5tw /t. This shows that ford.2 and any fixed value
of x limtw→`xag(t,tw)50, implying

lim
tw→`

x~ t,tw!5xst~ t2tw!. ~88!

Hence, in the limittw→` the equilibrium FDT~85! is sat-
isfied by the whole response function and the plot ofx(t,tw)
vs Gc(t,tw) is linear. Instead, ifx(t,tw) is plotted against the
full autocorrelation function~67!, from Eq. ~55! follows

lim
tw→`

TFx~ t,tw!

5H G~ t,t !2G~ t,tw! for M2,G~ t,tw!<M0
2

M0
22M2 for G~ t,tw!,M2 ~89!

yielding the behavior of Fig. 2 which is characteristic of t
phase-ordering process@2,3#.

For d52 the power oftw in front of the integral disap-
pears from Eq.~87! and the leading contribution fort
@L22 is given by
04613
m

ce

xag~ t,tw!5
1

2p
lnS 2

11Ax
D ~90!

showing that the aging contribution to the response does
vanish astw→`. Furthermore, sinceTC50 for d52, the
phase-ordering process requiresTF50 and from Eq.~67!
follows

G~ t,t8!5Gs~ t,t8!52M0
2

Ax

11x
. ~91!

Eliminating x between Eqs.~90! and ~91! we get

xag~G!5
1

2p
lnH 2

11
M0

2

G
F 12A12

G2

M0
4G J , ~92!

which gives a parametric plot~Fig. 3! qualitatively similar to
what one finds in the Ising model ford51.

As recalled in the Introduction, with a scalar order para
eter the behavior ofxag(t,tw) under variations of dimension
ality becomes transparent by introducing the effective
sponse xe f f(t,tw) associated to a single interface. Th
mechanism regulating the behavior ofxag(t,tw) then is ex-
plained through the balance between the rate of loss of in
faces as coarsening proceeds, and the rate of growth o

FIG. 2. Parametric plot ofTFx(t,tw) vs G(t,tw) in the limit
tw→` for d.2.

FIG. 3. Parametric plot ofxag(t,tw) vs G(t,tw) for d52.
6-8
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single interface response given by Eq.~7!. The dimensional-
ity dependence of the exponenta in that case is the outcom
@4# of the competition between the external field and
curvature of interfaces in the drive of interface motion.

In the large-N model, there are no localized defects a
none of the above concepts has direct physical mean
Nonetheless, the notion of defect density can be extende
the large-N case by looking at the behavior ofI (t). Consider
the quench toTF50 where there are no thermal fluctuation
From Eq.~46!, for large timeI (t);2t21, namely,

M0
22

1

N
^fW 2~xW ,t !&;t21. ~93!

If the system was in the ordered state, with the order par
eter aligned everywhere, the left hand side ought to van
Therefore, the positive difference~93! may be attributed to
‘‘defects’’ with density

rD~ t !;L22~ t !;t21, ~94!

which is what one obtains, in general, with a vector ord
parameter@1#. We may then define the effective respon
function per defect by the analog of Eq.~6! xag(t,tw)
5rD(t)xe f f(t,tw) which yields

xe f f~ t,tw!5t22d/2E
x

1

dy
y2d/421

S 12y1
1

L2t
D d/2 . ~95!

The behavior of this quantity can be computed analytica
for short time and large time separations obtaining in b
cases, apart from a change in the prefactor, a power
behavior as in Eq.~6!

xe f f~ t,tw!;~ t2tw!a ~96!

with

a5H 0 for d.4

22
d

2
for d,4,

~97!

and

xe f f~ t,tw!; ln@L2~ t2tw!# ~98!

for d54. The overall exact behavior ofxe f f(t,tw) obtained
by plotting Eq.~95! for different dimensionalities, is depicte
in Fig. 4.

Therefore, the qualitative picture is the same as obtai
in the scalar case@4#. There exist upper critical dimension
alities, dU53 for N51 anddU54 for N5` ~presumably
for all N.1), above whichxe f f saturates to a constant valu
within microscopic times. AtdU xe f f grows logarithmically,
while belowdU there is power law growth. In addition ther
are lower critical dimensionalities,dL51 for N51 anddL
52 for N5` ~or N.1), where the exponenta reaches
exactly the value such thatxe f f(t,tw);r I

21(t) in the scalar
04613
e

g.
to

.

-
h.

r

y
h
w

d

case andxe f f(t,tw);rD
21(t) in the vectorial case. Namely, a

dL the growth ofxe f f makes up exactly for the loss of inte
faces or defects, producing the behavior illustrated in Fig

VI. CONCLUDING REMARKS

In this paper we have shown that the basic features of
slow relaxation phenomenology arising in phase-order
processes, namely, the separation of order parameter, a
correlation function and linear response function into f
and slow components, can be obtained analytically and
actly in the large-N model. The behavior ofxag(t,tw) is of
particular interest since it displays the same qualitative p
tern of behavior under variation of dimensionality observ
in the Ising case. This is a strong indication that this might
a generic feature of the slow relaxation in phase-order
processes. In this respect it might be worth undertakin
numerical study ofxag(t,tw) in systems with vector orde
parameter and finiteN at different dimensionalities.

A comment should be made about the connection betw
static and dynamic properties. One of the most interes
recent developments in the study of the off-equilibrium d
viation from FDT has been the derivation@10# of a link be-
tween the response function and the structure of the equ
rium state. Assuming that limtw→`x(t,tw)5x(G(t,tw)), i.e.,

that in the large time regimex(t,tw) depends on time only
through the autocorrelation function, this connection tak
the form

P~q!52TF

d2x~G!

dG2 U
G5q

, ~99!

whereP(q) is the probability that in the equilibrium state th
overlap 1/NV*VdxWfW (xW )•fW 8(xW ) between two different con-
figurations@fW (xW )# and @fW 8(xW )# takes the valueq. For Ising
systems Eq.~99! holds for d.1. In fact, for d.1 the tw
→` limit of x(t,tw) is found @2,4,6# to have the form~89!
which, applying Eq.~99!, yields

P~q!5d~q2M2! ~100!

in agreement with an equilibrium state formed by the m
ture of pure states. Ford51, sincexag(t,tw) does not dis-

FIG. 4. Plot ofxe f f(t,tw) for tw5108 and L51. The dashed
lines are power laws with the corresponding exponenta.
6-9
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appear astw→`, the connection~99! is no more valid@4#.
Then, in the large-N model we should expect Eq.~99! to fail
at most ford52, since that is the case wherexag(t,tw) does
not asymptotically vanish. However, it is not so straightfo
ward that Eq.~99! should hold ford.2. In fact, as observed
above, the behavior ofx(t,tw) in the limit tw→` for d.2 is
indistinguishable from what one obtains in the Ising ca
Namely, one finds the form~89! of x(G), which yields Eq.
~100! for P(q) and this is what one expects when there i
mixture of ordered pure states. The problem is, as expla
in Sec. II, that the structure of the low temperature state
the large-N model is quite different from a mixture of or
dered pure states. This puzzling feature of the large-N model
will be investigated in a separate paper.
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APPENDIX A

Solving Eq.~19! in the large volume limit one finds fo
0,(TF2TC)/TC!1

~jL!225

¦

L2

2 F M0
2

2TF

~8p!d/2

G~12d/2!
G22/(22d)

for d,2

e24pM0
2/TF for d52

FTF2TC

TC

1

G~22d/2!G
2/(d22)

for 2,d,4

TF2TC

TC
S L2

M0
2g

1
TF

TC

2

d24D 21

for d.4

~A1!
04613
-

.

a
d

n

and

~jL!22ln@~jL!22#52S TF2TC

TF
D for d54. ~A2!

For TF5TC

j55
M0

2

TC
S d22

d24
2

L2

r DV1/4 for d.4

FGS 42d

2 DTC
(d/2)21M0

2L22dG1/d

V1/d for d,4

~A3!

and

j@2 ln~jL!#21/45S M0
2

L2TC

VD 1/4

~A4!

for d54.

APPENDIX B

The prefactors in Eq.~46! are given by
Aa5

¦

DF M0
2

G~12d/2! S 8p

TF
D d/2G22/(22d)

for d,2

2p
D

TF
2

M0
2e24pM0

2/TF for d52

FM0
2

TC
~TF2TC!G (42d)/(22d)S 1

2g
1

DM0
2

2TC
D F2TFuG~12d/2!u

~8p!d/2 G 2/(d22)
1

d22
for 2,d,4

2
~8p!2

2TC
S 1

2g
1

DM0
2

2TC
D l

ln~2j22!
for d54

S 1

2g
1

DM0
2

2Tc
D S 1

2g
1

M0
2

L2

T

Tc

1

d24D 21

for d.4,

~B1!
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Ac5

¦

D

M0
2

1

~8p!d/2
for d,2

D

8pM0
2

for d52

sinF S d

2
21DpG S 1

g
1

DM0
2

TC
D ~8p!d/221

TC
~d22! for 2,d,4

1

2TC
S 1

2g
1

DM0
2

2TC
D for d54

S 1

2g
1

DM0
2

2TC
D S 1

2g
1

M0
2

L2

1

d24D 21

for d.4,

~B2!

and

Ab5
TF1gDM0

2

~8p!d/2gFM0
2S 12

TF

TC
D G2 . ~B3!
ur

t
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