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Slow relaxation in the largeN model for phase ordering
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The basic features of the slow relaxation phenomenology arising in phase ordering processes are obtained
analytically in the largeN model through the exact separation of the order parameter into the sum of thermal
and condensation components. The aging contribution in the response fuggg{ort,,) is found to obey a
pattern of behavior, under variation of dimensionality, qualitatively similar to the one observed in Ising
systems. There exists a critical dimensionalit/=4) above whichy,4(t,t,) is proportional to the defect
densitypp(t), while for d<4 it vanishes more slowly tham,(t) and atd=2 does not vanish. As in the Ising
case, this behavior can be understood in terms of the dependence on dimensionality of the interplay between
the defect density and the effective response associated to a single defect.
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[. INTRODUCTION Here, the stationary contributioyg(t—t,,) satisfies the
equilibrium FDT with respect t@&(t—t,,), while x,4(t,t,)

The phase-ordering proces$és following the quench of is the off-equilibrium extra response due to the presence of
nondisorder systemg.g., ferromagnejsbelow the critical ~the interfaces. This is considerf2i3,6] to be proportional to
point provide a simplified framework for the study of slow the interface density
relaxation phenomena. In particular, aging and the off- Yao(ttw) ~p1 (1) ()
equilibrium deviation from the fluctuation dissipation theo- agw) I,
rem (FDT) have been studied numericall§—4] and through ~ where p,(t)~L~*(t) and L(t)~t*? is the typical domain
analytical treatment of solvable model5—-7]. The basic size withz=2 for nonconserved order paramefét, as we
structure of the complex phenomenology arising in theseshall assume in the following. A more precise formulation of
processes originates from the wide separation in the timéhis behavior is through the scaling relation
scales of fast and slow variables. Referring to the more in-
tuitive case of a domain forming system, in the late stage of
phase ordering the order parameter can be assumed to be the
sum of two statistically independent compon€i@p

oAt

Xag(t’tw):twaX(t_ )
w
with the exponenti=1/2. The implication is thajq(t,ty)
. . _ is negligible in the asymptotic regintg— .
d(X, 1) =h(X,t) + o(X,t), (1) Motivated by analytical results[7,9] for the one-
dimensional Ising model, which do not fit in the above

the first describing equilibrium thermal fluctuations within Scheme, recently we have undertaken a detailed study of the
domains and the second off-equilibrium fluctuations due td>ehavior of the response function under variation of space

interface motion. From Eq(1) follows rather straightfor- dimensionality for a system with a scalar order parameter
wardly the split of the autocorrelation function [4]. On the basis of numerical simulations for discrete Ising

spins and approximated analytical results for continuous
spins, we have arrived to a picture for the behavior of
, ) Xag(t,tw), which modifies considerably the one presented
above. This is best understood by introducing the notion of
the effective response due to a single interface and is defined
whereGg(t—t,,) is the stationary time translation invariant by
(TTI) contribution due taf andG,4(t/t,,) is the aging con- _
tribution due to the off—equilibriumgr degrees of freedom. A Xag(ttw) =P (D Xeri(ttw). ®
similar structure shows up in the linear response at the tim&hen, if Eq.(4) were to hold,y.¢(t,t,) ought to be a con-
t to an external random field switched on at the earlier timestant. Instead, we have found that for an Ising system this is

G(t,t,) =Gg(t—t,) + Gag

tw

ty the case only fod>3, while ford<3 there is the power law
growth
X (1) = xst(t—tw) + Xag(t,tw). () Xeff(t,ty) ~ (t—1t,)¢ (7)
with numerical values for the exponent compatible with
*Email address: corberi@na.infn.it =(3—d)/4. At d=3 the power law is replaced by logarith-
"Email address: lippiello@sa.info.it mic growth, promotingd= 3 to the role of a critical dimen-
*Email address: zannetti@na.infn.it sionality. This result is interesting for two reasons. The first
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concerns the mechanism of the response and the role of tlienction is considered in relation to the off-equilibrium de-
off-equilibrium degrees of freedom. The power I1&W re-  viation from the FDT. Finally, concluding remarks are made
veals that fold<3 the aging component of the response doesn Sec. VI.

not originate trivially just from the polarization of interfacial

spins, but a more complex phenomenon producing large Il. MODEL AND STATIC PROPERTIES

scale optimization of the position of domains with respect to ) ) )

the external field is at work. The second regards the overall \We consider the purely relaxational dynamics of a system
behavior ofy.q(t,t,,). Putting together Eqg6) and (7), the with a _ noncon_served order parameter governed by the
exponenta in Eq. (5) acquires a dependence on dimension-Langevin equation

ality - - -
dp(X,t) OH[$] - .
== == Tnxb, 9
at dp(x.t)
! d>3
2’ where = (¢4, . .. ,dy) is anN-component vectorp(x,t)
a=3 g4-1 8 is a Gaussian white noise with expectations
T' d<3 .o
(n(x,1))=0,

showing that lin ...xag(t,tw) does not vanish as—1. (1a(X, ) 75(X" 1)) = 2T 5, g6(x—x") 8(t—=1") (10
This indicates thad=1 plays the role of a lower critical andT is the temperature of the thermal bath. In the dynami-
dimensionality, where the off-equilibrium response becomega| process of interest, the system is initially prepared in the
persistent. An interesting consequence of this phenomenon jgfinite temperature equilibrium state with expectations

that the connection between static and dynamic properties

[10], which holds ford>1, is invalidated atd=1. It should ($(x))=0,

be added that in order to have a phase-ordering process in

d=1 thermal fluctuations within domains must be sup- (¢ (X) b (f’))zA& S(X—x") (11)
pressed4]. TR *p :

As stated previously, the picture summarized above hagnq ot the time=0 is quenched to a lower final temperature
been established on the basis of a combination of exact rq—F_ The Hamiltonian is of the Ginzburg-Landau form

sults for thed=1 Ising model, numerical results for Ising

systems withd>1, and approximate analytical results for .
continuous spin systems. It is, then, interesting to test how H[¢]=J dx
general is the picture. As a step in this direction, we have v
considered the larg- model where exact analytical calcu-
lations can be carried o(ifL1]. The slow relaxation proper-
ties of the largeN or equivalent mean field models, arising in
the quench at or belo have been analyzed befdig12)].
What we do here, however, goes beyond previous resul
since we manage to reproduce exactly and analytically the -
scenario outlined for Ising systems. We show that in the dp(k.t)
largeN model one can make explicitly the separati@h of dt
the order parameter into the sum of two independent compo-

nents, which are responsible for the stationary and aginyhere
contributions in Eq(2). Then, we carry out analytically the

1 . r. g -
§(V¢)2+§¢2+m(¢z)z, (12

wherer <0, g>0, andV is the volume of the system. In the
largeN limit the equation of motion for the Fourier trans-
form of the order parametetp(k)= f\dH(x)expik-X)
tté’;lkes the linear form

=—[K2+1(t)]p(k,t)+ n(k,t), (13)

corresponding separatidB) of the response function. After <;}(|Z.t)>:0,
introducing the notion of defect density for the lange- R R
model, we derive by analogy with E¢6) the effective re- (na(K D) 9p(K' 1)) =2Tg8, gV ki o0(t—t"), (14)

sponse per defect and we find a behavior, as dimensionality
is varied, qualitatively similar to the one established for scaand the function of time
lar systems.

The paper is organized as follows. In Sec. Il the lakge-
model is defined and the main static properties are reviewed.
In Sec. lll the solution of the equation of motion is presented
and the analytical form of the autocorrelation function ismust be determined self-consistently, with the average on the
obtained in quenches at and below the critical point. In Secright hand side taken both over thermal noise and initial
IV the splitting of the order parameter into independent com-condition. If the volumeV is kept finite the system equili-
ponents satisfying the requirements described above is cabprates in a finite timé,.q and the order parameter probability
ried out. In Sec. V the behavior of the integrated responsélistribution reaches the Gibbs state

(0 =r+ S {(F50) as
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- 1 1 oo e with logarithmic corrections fod=4. Finally, belowT. one
Ped ¢(K)]1=exp — 7TV % (k+&79) (k) - (= K) |, finds/§2= M2V/Te where M?=M3(Tc—Tg)/Tc) and M3
=-rlg.
(16) Let us now see what are the implications for the equilib-

rium state. As Eq(16) shows the individual Fourier compo-
nents are independent random variables, gaussianly distrib-
uted with zero average. The variance is given by

where¢ is the correlation length defined by the equilibrium
value ofl(t) through

I PR 1 ... »
£ 2=+ S(B(X)eq 7 N{(B(K) - B(—K)eq=VCeq(K), 24

with (-)eq standing for the average taken with E@6).

i oot where
In order to analyze the properties B (k)] it is nec-
essary to extract from E¢17) the dependence @f 2 on T T
andV. Evaluating the average, the above equation yields Ceq(lz): 2_F2 (25)
ke+ &
g Te
-2 N
§=rt Vv % K2tg 2 (18) is the equilibrium structure factor. FGr->T., all K modes

behave in the same way, with the variance growing linearly
with the volume. ForTe<T., instead,& 2 is negligible

The solution of this equation is well knowWa3] and here we s
with respect tck? except atk=0, yielding

summarize the main features. Separating khkeD term un-
der the sum, for very large volume we may rewrite

.
k—g (1-Sgg+avPsg,  for Te=T,

2 gTeB(E D) g —F 19 %
§°=r+gTeB(£9) gvg_z, (19 Ceq(K) = ;
k—;(l—égvo)+M2V5|gvo for Te<T,,
where
(26)
1 1 ddk e K7A?

B(¢£2)=lim— 2 2 72:J i g wherea is a constanfAppendix A). This produces a volume

vV F K+ E (2m)° k°+¢ dependence in the variance of tke 0 mode growing faster

(20 than linear. Therefore, fof <T the k=0 mode behaves

regularizing the integral by introducing the high momentumdifferently from all the other modes witlk+0. For Te
cutoff A. The functionB(x) is a non-negative monotonically < Tc the probability distribution(16) takes the form
decreasing function with the maximum valuexat 0, 1
- = 732 2y/2

dk_e w2 o Ped $(k)]=ze&~# IO
B(0) f 2mi K (4) d—2A . (21 L -

><exp[—ﬂ > K2H(K)- p(—K)|.
By graphical analysis one can easily show that @§) ad- FY &k
mits a finite solution for allTz. However, there exists the (27)
critical value of the temperaturg; defined by

Therefore, crossing ¢ there is a transition from the usual
r+gTcB(0)=0 (22 disordered high temperature phase to a low temperature
phase characterized by a macroscopic variance in the distri-
such that forTe>T¢ the solution is independent of the vol- pytion of thek=0 mode. The distinction between this phase
ume, while forTe<T¢ it depends on the volume. Using and the mixture of pure states, obtained beloywwhenN is
kept finite, has been discussed elsewhér.
We shall refer to this transition as condensation of fluc-

tuations in thek=0 mode. In order to gain a better insight it
is convenient to go back to real space, splitting the order
whereT'(1—d/2x/A?) is the incomplete gamma function, Parameter into the sum of the two independent components
for 0<(Tp—T¢)/Tc<1 one finds(Appendix A é~((Te o
—T¢)/Te) 7, wherev=1/2 for d>4 andv=1/(d—2) for d(X)= 0o+ f(X) (29
d<4, with logarithmic corrections fod=4. At T one has
E~VM with \=1/4 for d>4 and\=1/d for d<4, again  with

d x
B(x)=(4w)‘d/2xd’2‘leX/A2F( 1- §’P> .23
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1. .
o=y¢(k=0) (29
and
- .1 I
W)=y 2 bk (30
k#0
Then Eq.(27) takes the form
Ped ¢(X)]=P(0)P[$(x)] (31)
where
> 1 _(;_2 2
(0)= (2nMEE o (32

shows the formation of the condensate beldw with the
macroscopic variance N{ 52) .= M? while

(33

o 1 1 -
PLy(x)]= Zexﬁ{ - Z—TFdeX(V )?

describes thermal fluctuations about the condensate. Corre-

spondingly, the correlation  function Geq(X—x')
= (LIN){B(X) - $(X))eq Splits into the sum of two pieces
Geg(X—X")=Gr(x—x')+M?, (34)
where
- -, 1 .. . -,
Gr(x=x") = ($(X)- (X)) eq (35

is the correlation of thermal fluctuations aktf comes from
fluctuations of the condensate. Sir(ée(i—)?) at large dis-
tances decays likdx—x'|279, from Eq. (34) follows

PHYSICAL REVIEW EG65 046136

evolves into the equilibrium condensateand #(x,t) into
the equilibrium thermal fluctuations.

IIl. DYNAMICS

Due to rotational symmetry, from now on we shall drop
vectors and refer to the generic component of the order pa-

rameter. The formal solution of EL3) is given by
- - . t - >
¢(k,t)=R(k,t,0)¢o(k)+f dt'R(k,t,t") p(k,t"),
0
(38)

where ¢o(K) = #(k,t=0) and according to Eq11) in the
V—co limit

(bo(k))=0
(do(K) (k")) =A(2m) S(k+K"). (39
The response function is given by
.Y (-t
R(Kk,t,t )——Y(t) e~k tt (40)

with Y(t) =exd Q(t)], Q(t)=/tdsl(s), andY(0)=1. The ac-
tual solution is obtained once the functiof(t) is deter-

mined. In order to do this, notice that from the definition of

Y(t) follows
dY?A(t -
dt( )=2[r+g<¢2(x,t)>]Y2(t)- (41)
Writing ($2(x,t)) in terms of the structure factor
- di . 22
2 _ —K2IA
(X)) f amickne (42)

Iim‘;,;/HwGeq()Z—)z’):Mz showing the violation of the anq using Eq(38) to evaluateC(K,t)

clustering property of the correlation function due to the
breaking of ergodicity in the low temperature phase. For fu-

tur§ reference, notice that from E(L7) follows that forx
=x" andTe<T¢
Geq(0)=M3, (36)
which in turn implies
G1(0)=M3Z—M?2, (37)

As stated above, with a finité¢ equilibrium is reached for
~teq @andteq~ £2. Hence, in a quench td-<T. one has

teg~V implying that if theV—c limit is taken at the begin-

ning of the quench, equilibrium is not reached for any finite
time. Since in the following we are interested in the relax-
ation regime before equilibrium is reached, we shall take the
thermodynamic limit from the outset. We are interested to

see whether it is possible to carry out the decomposition
of the order parameter in such a way tﬁz(b_f,t) eventually

- t =
C(k,t):RZ(k,t,O)A+2TFf dt'R?(k,t,t"), (43
0

from Eq. (41) we obtain the integro-differential equation

4y =2rY2(t)+2gAf| t+ i)
dt 2A2
t 1
+4gT,:fodt’f(t—t’+m Y2(t"), (44)
where
f(x)= f %ez"Zx:(wa)d’z. (45)

Solving Eq.(44) by Laplace transforni12,15, the leading
behavior ofY(t) for large time is given by
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Aaezgizt fOI’ TF>TC
Y2(t)=1{ At? for Te=Tc¢ (46)
At 9?2 for Te<Tc,

wherew=0 for d>4 andw=(d—4)/2 ford<<4. The values
of the constanté\,, Ay, andA. are listed in Appendix B.
This completes the solution of the model. Once the re-

sponse function is known, we may go back to E28) and
take various averages. Using E¢§4) and (39) we have

(p(k,1))=0 (47)

and for the two time structure factofe(Kk,t) (k' t"))
=C(k,t,t")(2m)95(k+K") with t=t’

C(k,t,t")=R(k,t,00R(k,t’",00A

+2TFJt dURKLERK 7). (48)
0

The corresponding real space correlation functi@r@i
—x' tt)=(b(X,t) p(x',t")) is given by

G(i—i’,t,t')=f dX"R(X—X",t,00R(X" —X",t’,0)A

t’ > S -
+2TFJ dt”J dX"R(x—x",t,t")
0

PHYSICAL REVIEW E 65 046136
with the autocorrelation function G(t,t’)=G(Xx—x’
=04,t"). Using the definition$40) and(45), this is given by

1

= A
Y(H)Y(t)

G(t,t") BREYY

(t+t’ 1

t’ t+t’ 1
+2TFJ dt’f| —— —t"+—— | YA(t") |.

0 2 2A%
(50)

The behavior of this quantity for different final temperatures
and for different time regimes has been studied in the litera-
ture[12,15. Here we summarize the results.

For Te>Tc, from Eqg. (46) follows that for t'>t,
=2¢"2 the autocorrelation function is TTI

G(7)=Geq0)e™ teq, (51)

whereG,(0) is the equilibrium fluctuation above: given
by Eq.(17), i.e., Geq(0)=M3+(1/g)é 2 and 7=t —t'.

For Te<T, the equilibration time diverges and there are
two time regimes of interest(i) short time separation’
—o and 7/t'"—0; (i) large time separationt’— and
7/t — 0,

Takingt’ large and using Eq446), for Te=T¢ in these
limits we find

M3(A27+1)1-972 for t1’_>0

.. G(t,t")= (52
HROCEAEED, “9 At’ld’zF(l) for ——oo
where R()Z,t,t’) is the inverse Fourier transform of t t
R(Iz,t,t’). In the following we will be primarily concerned with
1-d/4
__1\1-d/2
—(4w)d’2(d—2)(x 1) ) for 2<d<4
F(x)= (53
4 Xx—1 1-d/2 X+1 1-d/2
- — for d>4,
(8m)%2(d—2) ( 2 ) 2 }
|
and forTe<T,, t!
G(t,t")=Gg(7)+Gqyq rak (55)
M2+ (MZ-M2)(A27+ 1) % for .0  where
t!
G(tt")= o Gel(7)=(MZ—M2)(A27+ 1)1~ 92 (56)
M? A for — oo,
(t+1")? t/ and
(54) 4x d/i4
GLy(X)=M? (57)
In the latter case we may also write ag(%) (1+x)?
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10° and
- t - >
z//(k,t):f dt'R(k,t,t") p(k,t") (63

— to
G since, for O<to<t, ¢(K.to) and 5(k,t) are independent by

causality. In other words, the order parameter at the tilae

split into the sum of a component(lz,t) driven by the fluc-

107 tuations of the order parameter at the earlier tipend a

componentzﬂ(lz,t) driven by the thermal history betweeg
andt. Let us remark thaty can be chosen arbitrarily between
FIG. 1. Comparison of the exact autocorrelation functionthe initial time of the quencht=0) and the observation time

G(t,t,) (broken ling with the suMGg(t—t,)+G,4(t/t,) (con- L With the particular choicé=0, the componena (k,t) is

tinuous ling for t,,=1,10,16,10% increasing from left to right. For ~ driven by the fluctuations in the initial conditid89). The ¢

t,=10° the two curves are indistinguishable. Parameters of the¢eomponent describes fluctuations of thermal origin while the

quench arel=3, Tp=T¢/2, andA=1. o component, as it will be clear below, tif is chosen suffi-
ciently large, describes the local condensation of the order

This is illustrated in Fig. 1 that shows the convergence toparameter.

ward the form(55) of the exact autocorrelation function According to definitiong62) and(63), from Eqgs.(14) and

G(t,t") obtained by solving numerically the coupled set of (39) follows o(k,t)=((k,t))=0. The two time structure

Egs.(44) and (50). _ . o factor splits into the sum
As explained in the Introduction, this behavior is sugges-
tive of the existence of two variables responsible, respec- Dk rr ) )
tively, for the stationary and of the aging behaviors. Now we Cltt)=Colk L)+ Cylk 1) 64
want to show that in the largh-limit these two variablescan =~ =~ ——————- _— dert | 2
be explicitly constructed. with o(k,t)o(k’,t")=C,(k,t,t")(2m)"s(k+k’) and
IV. SPLITTING OF THE FIELD Co(Ktt)=R(K Lt R(K,' ,tg)C(K,tp),  (65)

The task s'ta_ted at the end of the preqeding section rEi/'vhereC(lZ,to) is the equal time structure factor at the time
quires the splitting of the order parameter field into the sum imilar] c K1)y — Kt (2m SR+ K
of two independent contributions rlei.thSIml arly (h(k,t) (k' ,t'))=Cy(kt,t")(2m) 5(k+K’)

H(X, ) =YX, )+ o(X,1) (58)

) _ Cl,,(lz,t,t’)=2TFft dt’R(K,t,t")R(K,t",t").  (66)
with zero average&y(x,t))= o(x,t)=0 and autocorrelation to
functions such that R

Going to real space and setting-x’, we have

(PO X)) =G 7) (59
G(t,t") =G, (t,t")+Gy(t,t") (67)
) o(X,t')=Goq(t'/1). 60 _
o(X,1)o(X,t")=Gaqg(t'/t) (60) with
In order to stress the statistical independence of the two com-
ponent fields, we have used the angular brackets for averages =~ = Y?(to) ddk
over ¢ and the overpar for'averag'es over ' o(Lt)= Yy 2md
For the construction of fields with these properties, let us
go back to Fourier space. Using the multiplicative property 1 .
of the response function Xexg —k? t+t'—2to+P C(k,to) (68)
R(K,t,t)R(K,t',to)=R(K,t,t 61
( IR( 0)=R(k,t,to) (61) and

with t>t'>t, it is easy to show that the formal soluti¢88)
of the equation of motion can be rewritten as the sum of two

statistically  independent componentsp(k,t) = i(K,t)
+o(k,t) with

G, (t,t)=2T ft/dt” Y d%
(L) =2Te v YY) (2m)

1
t+t’—2t”+P 1 (69

(K0 =R(K t,to) (K to) 62 Xw%_w
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Assuming that andt’ are sufficiently larger thaty so that Gy(t,t')=Gg(7) (78)
C(Kk,t,) under the integral in Eq68) can be replaced by its

value atk=0 and using Eq(45) we may write an

t+t’

t/
1 G,(t,t")=G, (—) (79
5 —to+2A2)co, (70) At

Y2(to)
YOY(t)

G,(t,t")=

Therefore, the fields(x,t) and ¢(x,t) defined by Eqs(62)
) and(63), with the choice oty>t*, provide an explicit real-
| ("), ization of the decompositiof68) satisfying the requirements
(71) (59) and(60). The physical meaning of the two components
can be readily understood comparing the equal time values
whereCy=C(K=04,). of Eq. (76), which yield, respectivelyG,(t=t’)=M? and

Let us now evaluate these results for short and large tim&(t=1")= MG—M?2, with the equilibrium result¢36) and
separations. In the first case the dominant contributions aré?). Itis then clear that the fieldt(x,t) is associated to local
given by condensation of the order parameter with fluctuations of size

o ) ) b 1-di2 M2, while the field://(i,t) describes thermal fluctuations. In
G,(t,t") =M= (My—M*)(2A%to) (72 the case of a system with a scalar order parametevould
be associated to the average value of the order parameter
characteristic of a domain ang to thermal fluctuations
M2)[(2A2tg)1 924+ (A274 1)1~ 92], withip domains[4]. This also makes clear the o_rigin of thg
(73) requwer_nenlto>t*. In ordgr to mak_e a separation of vari- _
ables with the above physical meaning, it is necessary to wait
where the unknown constaflt, entering Eq.(70) has been @ timet, large enough for all microscopic transients to have
eliminated imposing that the equilibrium sum rui&,(0) occurred leaving well formed local equilibrium.
+Gy(0)= MS be satisfied. The sum of the above contribu-
tions is independent df,, as it should, and coincides with V. RESPONSE FUNCTION
Eq. (54). Similarly, in the large time regime we find thg
dependent results

2T|: t’ t+t,
Gw(t,t’)z—f dt’f| ———t"+
Y(t)Y(t') 1 2

and

Gy(tt)=(M§-

In the preceding section we have produced the explicit
separation of the order parameter into the condensation com-

artr |94 ponent and thermal fluctuations in the quenci gt T . It
G, (t,t")=[M2=(M3—M?)(2A%tg)* 92)| —— is now interesting to see in what relation these components
(t+1")? are with the linear response function.
(74 If an external field is switched on at the tinhg>t,, the
splitting (58) modifies intogy(X,t) = ¢(x,t) + an(X,t) where
and .
to the linear order
4t |
d/ - - N t .. .o
G (t,t)=(Mg—M?)(2A%to) '~ 2{@1 (75 o-h(X,t)Za'(X,t)-i—J't dt’jvdx’R(x—x',t,t’)h(x’)

80
again with the sum independent tf and giving back Eq. 80
(54). Defng the microscopic timé* =A "2, we see that  with o(x,t), ¥(x,t), andR(X,t,t") being unperturbed quan-
takingto>t* from Eqs.(72) and(73) we get the short time  tjties. Here, we are interested in the response to a quenched,
behavior gaussianly distributed random field with expectations

G, (t,t")=M?, En[h(x)]=0,

" — 2_ —d/ N o I
CALI=(Mom MOASHLTEE - (7 B[, (X =h35,006- %), (81)

while from Eqgs.(74) and(75) follows the large time behav- Computing the staggered magnetization from EBf) and

o averaging over the field, we obtain
4t |
G,(t,t")=M?2 — .
AL =M R I=x(tt), (82
Gy(t,t")=0. 77 Wherex(t,tw):f{WR(t,t’) is the integrated response func-
Comparing with Egs(56) and (57) we can make the identi- tion and R(t,t’)=R(>?—>?':0,t,t’). From Egs.(40) and
fications (46), for Te<T,,
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d

ddk
R(t’t’):f (27)

:(477_)7d/2

R(K,t,t")e KA

—d/a , 1
-t

d

—d2

!

I (83

Let us then write the integrated response function as the sum

X(tvtw):Xst(t_tw)+Xag(tvtw)i (84)

where the stationary componepd(t—t,,) is defined by re-

quiring that the equilibrium FDT be satisfied with respect to

the stationary componeri¥8) of the autocorrelation func-
tion, namely,

Texslt—tw) = Gzp(o) - Gw(t_tw)-

It is straightforward to check that this is verified by

1 —dr2
t—t'+—

A2
Ti(Mé—W){l—[AZ(t—tWH1]1*‘*’2}.
F

(89)

t
xst(t—tw)=(4w)*d’2f dt’

tw

(86)
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=<

Texe,)

0

2
0

2

0 Gitt) M M

eq

FIG. 2. Parametric plot offgx(t,t,) vs G(t,t,) in the limit
t,—oe for d>2.

1
Xag(tatw): Eln (90

=

showing that the aging contribution to the response does not
vanish ast,,— . Furthermore, sinc8 =0 for d=2, the
phase-ordering process requir€s=0 and from Eq.(67)
follows

X
G(t,t’)zG(,(t,t’)=2M§1T\/—X.

The aging component then remains defined by the difference

Xag(tvtw) = x(t,ty) = xsdt—ty)

_ (4,”.)—d/2t\}v—d/2xd/2—lfldy
X

X

—di2
1-y+ ) (y"¥*-1), (87

A%,
wherex=t,,/t. This shows that fod>2 and any fixed value
of x IithHang(t,tW) =0, implying

lim x(t,ty) = xsi(t—ty). (88

ty—

Hence, in the limitt,,— the equilibrium FDT(85) is sat-
isfied by the whole response function and the ploy€f;t,,)
vs G,(t,t,) is linear. Instead, ik(t,t,,) is plotted against the
full autocorrelation functior(67), from Eq. (55) follows

Ilm TFX(tltW)

ty—®

G(tvt) - G(tltW)
[ M3-Mm?

for M2<G(t,t,)<M}

for G(t,t,)<M? 89
yielding the behavior of Fig. 2 which is characteristic of the
phase-ordering proce$g,3].

For d=2 the power oft,, in front of the integral disap-
pears from Eq.(87) and the leading contribution fot
>A "2 is given by

(93)

Eliminating x between Eqs(90) and (91) we get
1 2 02
Xag(G)= -—In , (92

2 M(Z) G2

1+ —|1- -—

G Mé

which gives a parametric pl@Fig. 3) qualitatively similar to
what one finds in the Ising model fak=1.

As recalled in the Introduction, with a scalar order param-
eter the behavior of,4(t,t,,) under variations of dimension-
ality becomes transparent by introducing the effective re-
sponse yesi(t,t,) associated to a single interface. The
mechanism regulating the behavior pfy(t,t,,) then is ex-
plained through the balance between the rate of loss of inter-
faces as coarsening proceeds, and the rate of growth of the

0.15
0.1

2

4

0.05
0
0 02 04 06 08 1

G(tt)

FIG. 3. Parametric plot of.4(t,t,) vs G(t,t,) for d=2.
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single interface response given by E@). The dimensional- J
ity dependence of the exponemtin that case is the outcome 10" 12
[4] of the competition between the external field and the Vi
curvature of interfaces in the drive of interface motion. =2

In the largeN model, there are no localized defects and =
none of the above concepts has direct physical meaning. ic
Nonetheless, the notion of defect density can be extended to
the largeN case by looking at the behavior Kft). Consider
the quench td' =0 where there are no thermal fluctuations.
From Eq.(46), for large timel (t)~—t~1, namely, 107

1 ..
ME— (@) ~t 2. (93
FIG. 4. Plot of yes(t,ty,) for t,=10° and A=1. The dashed

. . lines are power laws with the corresponding exponent
If the system was in the ordered state, with the order param- P P g exp

eter aligned everywhere, the left hand side ought to vanis
Therefore, the positive differend®3) may be attributed to
“defects” with density

hCase and(eff(t,tw)~p51(t) in the vectorial case. Namely, at
d, the growth ofy.ss makes up exactly for the loss of inter-
faces or defects, producing the behavior illustrated in Fig. 3.
po(H)~LA()~t 7, (94)
VI. CONCLUDING REMARKS

which is what one obtains, in general, with a vector order ) )

paramete{1]. We may then define the effective response [N this paper we have shown that the basic features of the
function per defect by the analog of EG6) xag(t.ty) slow relaxation phenomenology arising in phase-ordering

= pp(t) xers(t,ty,) Which yields processes, namgly, the sgparation of order parameter, auto-
correlation function and linear response function into fast
1 y 441 and slow components, can be obtained analytically and ex-
Xerf(t,ty)=t2"92| dy—————. (95 actly in the largeN model. The behavior ofa4(t.ty,) is of
x (1—y+ i particular interest since it displays the same qualitative pat-
A2t tern of behavior under variation of dimensionality observed

in the Ising case. This is a strong indication that this might be
The behavior of this quantity can be computed analyticallya generic feature of the slow relaxation in phase-ordering
for short time and large time separations obtaining in bottprocesses. In this respect it might be worth undertaking a
cases, apart from a change in the prefactor, a power lawumerical study ofy,4(t,t,) in systems with vector order
behavior as in Eq(6) parameter and finit®&l at different dimensionalities.
A comment should be made about the connection between
Xefi(tty) ~(t—=t,)¢ (96) static and dynamic properties. One of the most interesting
. recent developments in the study of the off-equilibrium de-
with viation from FDT has been the derivati¢phO] of a link be-
tween the response function and the structure of the equilib-
0 for d>4 rium state. Assuming that lin_...x(t,t,) = x(G(t.,t,)), i.e.,
a= d for d<4 (97)  that in the large time regimg(t,t,) depends on time only
' through the autocorrelation function, this connection takes

the form
and

d?x(G)
dG?

Xet(t,ty) ~IN[AZ(t—t,)] (99) P(a)=—Te

for d=4. The overall exact behavior of.¢+(t,t,,) obtained

by plotting Eq.(95) for different dimensionalities, is depicted whereP(q) is the probability that in the equilibrium state the

in Fig. 4. overlap INV/,dX(X)- ¢'(x) between two different con-
Therefore, the qualitative picture is the same as Obtaineﬂgurations[i(i)] and[@’(i)] takes the valug. For Ising

in the scalar casp4]. There exist upper critical dimension- systems Eq(99) holds ford>1. In fact, ford>1 thet,

alities, dy=3 for N=1 anddy=4 for N=cc (presumably .. jimit of y(t,t,) is found[2,4,6 to have the form(89)
for all N>1), above whichy,; saturates to a constant value |, ich applying Eq(99), yields

within microscopic times. Aty x.fs grows logarithmically,

while belowd, there is power law growth. In addition there P(q)=48(q—M?) (100
are lower critical dimensionalitiesl, =1 for N=1 andd,

=2 for N=« (or N>1), where the exponent reaches in agreement with an equilibrium state formed by the mix-
exactly the value such thazteff(t,tw)~p|‘1(t) in the scalar ture of pure states. Fat=1, sincey,q(t,t,) does not dis-

. (99
=g
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appear ag,,— %, the connectior(99) is no more valid[4]. and

Then, in the largeN model we should expect E(Q9) to fall

at most ford=2, since that is the case wheygy(t,t,,) does

not asymptotically vanish. However, it is not so straightfor-

ward that Eq(99) should hold ford>2. In fact, as observed

above, the behavior of(t,t,,) in the limitt,,— o for d>2 is (EN)72IN[(EA)?]= —(
indistinguishable from what one obtains in the Ising case.

Namely, one finds the fornB9) of x(G), which yields Eq.

(100 for P(q) and this is what one expects when there is a

mixture of ordered pure states. The problem is, as explainefor T-=T.
in Sec. Il, that the structure of the low temperature state in

the largeN model is quite different from a mixture of or-

dered pure states. This puzzling feature of the I&igeodel

Te—Tc
Te

) for d=4. (A2)

will be investigated in a separate paper. M2/ d— 2
_0(_d 2 _A_) 1a for d>4
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APPENDIX A

Solving Eq.(19) in the large volume limit one finds for gnd
O<(TF_TC)/TC<1

2[ M2 d2 1-2/(2-d)
A_ _Oﬂ for d<2
2 |2T- [(1—-d2) Mz |V
) g2 1In(£A)] V= ( —-V (A4)
e 4™MJ/Te for d=2 A?Tc
(EN) %= To—T 1 2/(d—2)
F_¢ } for 2<d<4
Te TI'(2—-d/2) for d=4.
Te-Tef A2 Tp 2 | °
(A1) The prefactors in Eq(46) are given by
|
M2 dr2]—2/(2—d)
fA[ 0 (S_W) } for d<2
[(1-d/2)\ T¢
A
Zw—zMée“‘“MS’TF for d=2
F
M2 - @=d/=d 9 AM2\[2T¢|T(1-d/2)|]747? 1 o reden
Aa: T_C( F C) E—'— 2TC (811')d/2 d_2 (Bl)
8m)?2( 1 AM3\ |
_ =) (—+ o) for d=4
2Tc \29  2Tc/In(2¢72?)
1 AM3\ (1 mMZT 1 \7!
(—+ O) 0 = for d>4,
\|20 " 2Tc /(29" A2T.d-4
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/ A ! for d<2
M3 (8r)9?
A
> for d=2
2 di2—1
Ac:< 1(d 1 AMg)\(8w) ¢ (B2)
— = - (d- or 2<d<4
sm(2 1|7 T T (d—=2)
1 (1 AM3
| =40 for d=4
2Tc\29 2T¢
1 AMZ (1 M2 o1\t
— 4+ O) _+_O_ for d>4,
\ 20 2Tc)/\29 A2d-4
and
Te+gAM3
(877)‘"29[ Mg( 1- —F”
Tc
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